自然语言处理(NLP)是一个人工智能领域,它应用信息技术来处理人类语言,在一定程度上理解并在各种应用中使用它。在过去的几年中,该领域已经迅速发展,现在采用了深层神经网络的现代变体来从大型文本语料库中提取相关模式。这项工作的主要目的是调查NLP在药理学领域的最新使用。正如我们的工作所表明的那样,NLP是药理学高度相关的信息提取和处理方法。它已被广泛使用,从智能搜索到成千上万的医疗文件到在社交媒体中找到对抗性药物相互作用的痕迹。我们将覆盖范围分为五个类别,以调查现代NLP方法论,常见的任务,相关的文本数据,知识库和有用的编程库。我们将这五个类别分为适当的子类别,描述其主要属性和想法,并以表格形式进行总结。最终的调查介绍了该领域的全面概述,对从业者和感兴趣的观察者有用。
translated by 谷歌翻译
raphracrasing是一种有用的自然语言处理任务,可以为更多样化的生成或翻译文本做出贡献。自然语言推论(NLI)和释义分享一些相似之处,可以从联合方法中受益。我们提出了一种新的方法,用于从NLI数据集中提取释放数据集并清洁现有的释义数据集。我们的方法是基于双向征报;即,如果两个句子可以相互矛盾,则它们是释义。我们在单声道和交叉旋转设置中使用几种大型佩带的变压器语言模型来评估我们的方法。结果显示了高质量的提取释放数据集,以及两个现有的释义数据集中的令人惊讶的高噪声水平。
translated by 谷歌翻译
This short paper discusses continually updated causal abstractions as a potential direction of future research. The key idea is to revise the existing level of causal abstraction to a different level of detail that is both consistent with the history of observed data and more effective in solving a given task.
translated by 谷歌翻译
Many researchers have voiced their support towards Pearl's counterfactual theory of causation as a stepping stone for AI/ML research's ultimate goal of intelligent systems. As in any other growing subfield, patience seems to be a virtue since significant progress on integrating notions from both fields takes time, yet, major challenges such as the lack of ground truth benchmarks or a unified perspective on classical problems such as computer vision seem to hinder the momentum of the research movement. This present work exemplifies how the Pearl Causal Hierarchy (PCH) can be understood on image data by providing insights on several intricacies but also challenges that naturally arise when applying key concepts from Pearlian causality to the study of image data.
translated by 谷歌翻译
Research around AI for Science has seen significant success since the rise of deep learning models over the past decade, even with longstanding challenges such as protein structure prediction. However, this fast development inevitably made their flaws apparent -- especially in domains of reasoning where understanding the cause-effect relationship is important. One such domain is drug discovery, in which such understanding is required to make sense of data otherwise plagued by spurious correlations. Said spuriousness only becomes worse with the ongoing trend of ever-increasing amounts of data in the life sciences and thereby restricts researchers in their ability to understand disease biology and create better therapeutics. Therefore, to advance the science of drug discovery with AI it is becoming necessary to formulate the key problems in the language of causality, which allows the explication of modelling assumptions needed for identifying true cause-effect relationships. In this attention paper, we present causal drug discovery as the craft of creating models that ground the process of drug discovery in causal reasoning.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Automatic term extraction plays an essential role in domain language understanding and several natural language processing downstream tasks. In this paper, we propose a comparative study on the predictive power of Transformers-based pretrained language models toward term extraction in a multi-language cross-domain setting. Besides evaluating the ability of monolingual models to extract single- and multi-word terms, we also experiment with ensembles of mono- and multilingual models by conducting the intersection or union on the term output sets of different language models. Our experiments have been conducted on the ACTER corpus covering four specialized domains (Corruption, Wind energy, Equitation, and Heart failure) and three languages (English, French, and Dutch), and on the RSDO5 Slovenian corpus covering four additional domains (Biomechanics, Chemistry, Veterinary, and Linguistics). The results show that the strategy of employing monolingual models outperforms the state-of-the-art approaches from the related work leveraging multilingual models, regarding all the languages except Dutch and French if the term extraction task excludes the extraction of named entity terms. Furthermore, by combining the outputs of the two best performing models, we achieve significant improvements.
translated by 谷歌翻译
Probabilistic context-free grammars have a long-term record of use as generative models in machine learning and symbolic regression. When used for symbolic regression, they generate algebraic expressions. We define the latter as equivalence classes of strings derived by grammar and address the problem of calculating the probability of deriving a given expression with a given grammar. We show that the problem is undecidable in general. We then present specific grammars for generating linear, polynomial, and rational expressions, where algorithms for calculating the probability of a given expression exist. For those grammars, we design algorithms for calculating the exact probability and efficient approximation with arbitrary precision.
translated by 谷歌翻译
The short-term prediction of precipitation is critical in many areas of life. Recently, a large body of work was devoted to forecasting radar reflectivity images. The radar images are available only in areas with ground weather radars. Thus, we aim to predict high-resolution precipitation from lower-resolution satellite radiance images. A neural network called WeatherFusionNet is employed to predict severe rain up to eight hours in advance. WeatherFusionNet is a U-Net architecture that fuses three different ways to process the satellite data; predicting future satellite frames, extracting rain information from the current frames, and using the input sequence directly. Using the presented method, we achieved 1st place in the NeurIPS 2022 Weather4Cast Core challenge. The code and trained parameters are available at \url{https://github.com/Datalab-FIT-CTU/weather4cast-2022}.
translated by 谷歌翻译
In this paper, we aim to address the large domain gap between high-resolution face images, e.g., from professional portrait photography, and low-quality surveillance images, e.g., from security cameras. Establishing an identity match between disparate sources like this is a classical surveillance face identification scenario, which continues to be a challenging problem for modern face recognition techniques. To that end, we propose a method that combines face super-resolution, resolution matching, and multi-scale template accumulation to reliably recognize faces from long-range surveillance footage, including from low quality sources. The proposed approach does not require training or fine-tuning on the target dataset of real surveillance images. Extensive experiments show that our proposed method is able to outperform even existing methods fine-tuned to the SCFace dataset.
translated by 谷歌翻译